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Abstract
Motivation: Cell membrane segmentation in electron microscopy (EM) images is a crucial step in EM image processing. However, while popu-
lar approaches have achieved performance comparable to that of humans on low-resolution EM datasets, they have shown limited success
when applied to high-resolution EM datasets. The human visual system, on the other hand, displays consistently excellent performance on both
low and high resolutions. To better understand this limitation, we conducted eye movement and perceptual consistency experiments. Our data
showed that human observers are more sensitive to the structure of the membrane while tolerating misalignment, contrary to commonly used
evaluation criteria. Additionally, our results indicated that the human visual system processes images in both global–local and coarse-to-fine
manners.

Results: Based on these observations, we propose a computational framework for membrane segmentation that incorporates these characteris-
tics of human perception. This framework includes a novel evaluation metric, the perceptual Hausdorff distance (PHD), and an end-to-end net-
work called the PHD-guided segmentation network (PS-Net) that is trained using adaptively tuned PHD loss functions and a multiscale architec-
ture. Our subjective experiments showed that the PHD metric is more consistent with human perception than other criteria, and our proposed
PS-Net outperformed state-of-the-art methods on both low- and high-resolution EM image datasets as well as other natural image datasets.

Availability and implementation: The code and dataset can be found at https://github.com/EmmaSRH/PS-Net.

1 Introduction

Electron microscopy (EM) techniques are widely used to
study the ultrafine structures of biological tissues at the nano-
meter scale (Curry et al. 2006, Harris et al. 2006, Erlandson
2009). One important task in EM image analysis is the seg-
mentation of cell membranes, which has numerous applica-
tions including reconstructing neural connections (Fakhry
et al. 2016) and visualizing cell morphology (Pelling et al.
2005, Pallotto et al. 2015). Compared to the semantic seg-
mentation task of natural images, membrane segmentation of
EM images is more challenging because of its higher resolu-
tion, more complex structure, and more details (Fig. 1a).

Despite the significant progress made by deep-learning
(DL) methods (Ronneberger et al. 2015, Paszke et al. 2016,
Chaurasia and Culurciello 2017, Shen et al. 2017, Yu et al.

2017, Hu et al. 2018, Khadangi et al. 2021) in the segmenta-
tion of EM cell membrane segmentation [ISBI 2012
(Arganda-Carreras et al. 2015)] approaching or even surpass-
ing human performance, their performance has been observed
to deteriorate on high-resolution datasets (both in terms of
the absolute number of pixels and the size of each pixel).
Specifically, DL methods have achieved �98% accuracy (V-
Rand) on the ISBI 2012 dataset, but only about 60% on the
high-resolution U-RISC dataset (Shi et al. 2022) with 10�
10k pixels. In contrast, human performance on both datasets
has been found to be consistently high (close to 99%). This
led us to question why human vision is more robust than DL
when dealing with images with complex textures and con-
tours. In this study, we aim to investigate the mechanisms of
the human visual system for the EM image segmentation task
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and identify the underlying causes for these differences in
performance.

During our investigation into the differences in perfor-
mance between humans and DL methods on cell membrane
segmentation, we noticed that there is a discrepancy between
human perception and commonly used evaluation criteria,
such as the F1 score (Sasaki et al. 2007), IoU (Kosub 2019),
and Betti number error (Betti) (Hu et al. 2021). For example,
in Fig. 1, (b) is the ground truth of the cell membranes in (a),
while (c) and (d) are two predictions by different algorithms.
According to the F1, IoU, and Betti scores, prediction (d) is
better than prediction (c). However, from a human perspec-
tive, the opposite is true because (d) lacks some important
structures. To better understand this discrepancy, we con-
ducted a subjective experiment in which subjects were shown
three images: the ground truth and two different predictions.
They were asked to indicate which prediction was more simi-
lar to the ground truth. We evaluated the consistency between
the preferences of these criteria and humans. Surprisingly,
results showed that these evaluation criteria are only 30%–
40% consistent with human perception.

To better understand the mechanisms of the human visual
system when comparing two images of cell membranes, we
conducted an eye movement experiment to record subjects’
saccades and fixations. In the experiment, subjects were
shown two images of cell membranes side by side, such as the
ground truth (b) and prediction (c) in Fig. 1e. Heatmaps and
arrows were used to indicate fixations and saccades, respec-
tively. Based on the data collected from eye movements, we
found that humans focus primarily on the structure of mem-
branes while using quick glances to compare other regions.
For example, the red regions of the heatmaps correspond to
junctions of cell membranes in (e) and missing edges in (f).
This suggests that humans pay more attention to the skeleton
of the cell membrane and missing edges, while ignoring

thickness and misalignment errors. Additionally, we observed
that humans use a global-local strategy and a coarse-to-fine
approach to find differences. Specifically, according to the
saccades, we found that humans first roughly scan the images
to locate areas with different structures and then repeatedly
compare these areas carefully. These observations are consis-
tent with the concept of spatial-frequency (multiscale) analysis
in neuroscience (Spillmann 1999, Beaucousin et al. 2013,
Nayar et al. 2015), which suggests that the biological human
visual system employs a global–local strategy for processing
images. Other studies (Hegdé 2008, Flevaris et al. 2014) have
also found that visual processing follows a coarse-to-fine pro-
gression, which helps to quickly process high-resolution
images.

Based on the insights gained from our investigations, we
present a cell membrane segmentation system that is designed
to conform to human visual perception. Specifically, we pro-
pose a new evaluation metric called the Perceptual Hausdorff
Distance (PHD), which measures the dissimilarity of cell
membranes by extracting their skeletons as point-sets and cal-
culating the distance with a flexible tolerance distance that
simulates human tolerance for minor errors. Our experiments
showed that the PHD metric is more consistent with human
perception than other evaluation criteria. Additionally, we de-
sign an end-to-end trainable network called the PHD-guided
segmentation network (PS-Net) for the segmentation of high-
resolution EM images, which takes into account both local
and global features using a structure extraction module.
During training, we use a newly proposed PHD loss with an
adaptive weight, which is based on the PHD metric, to simu-
late the coarse-to-fine processing characteristic of the human
visual system.

To evaluate the effectiveness of our new system, we com-
pare it with state-of-the-art methods on the EM image data-
sets ISBI 2012 and U-RISC. The results show that our

Figure 1. Illustrations of subjective experiments and eye movement experiments. (a and b) Original EM image with its ground truth of cell membranes. (c

and d) Cell membrane segmentation predictions of (a). The boxes indicate the errors of (d). (e) Eye movement data of subjects when comparing (b) and

(c). (f) Eye movement data of subjects when comparing (b) and (d). The heatmaps show the accumulated time of fixations, and the arrows show the

directions of the saccades.
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proposed PS-Net outperforms existing methods on all evalua-
tion criteria. We also demonstrate the versatility of our
method by applying it to natural image segmentation datasets,
where it also demonstrates state-of-the-art performance.

2 Related works

EM cell membrane segmentation, which can also be viewed
as cell boundary detection, is a critical step in EM image
analysis for neuron reconstruction. This task is more challeng-
ing than similar tasks on natural images, such as “delineation
detection,” due to the higher resolution, more complex struc-
tures, and more detailed information present in EM images.
Since the release of the first annotated EM image dataset in
the ISBI 2012 challenge (Arganda-Carreras et al. 2015), sev-
eral extraordinary DL methods have been developed for this
task. U-Net (Ronneberger et al. 2015) is a popular and suc-
cessful DL model for biomedical image segmentation.
Subsequent research efforts (Paszke et al. 2016, Chaurasia
and Culurciello 2017, Shen et al. 2017, Yu et al. 2017, Hu
et al. 2018, Khadangi et al. 2021) have sought to further im-
prove EM segmentation performance using a U-shaped en-
coder–decoder architecture and effective feature extraction
techniques, such as dual-channel blocks (Lou et al. 2021) and
skip connections (Chaurasia and Culurciello 2017). These
methods have achieved near-human performance on the ISBI
2012 dataset. However, as EM imaging techniques have ad-
vanced, the demand for the segmentation of ultra-high-
resolution images has increased. For instance, the recently
proposed U-RISC dataset (Shi et al. 2022) has a resolution of
120� 9958� 9959. When applied to this dataset, the perfor-
mance of these methods significantly decreased (from 98% on
ISBI 2012 to 60% on U-RISC). This suggests that algorithms
should not only focus on effectively extracting features from
limited labeled images, but should also incorporate human-
based strategies.

Evaluation for cell membrane segmentation. In the cell
membrane segmentation task, both pixel accuracy and topo-
graphic accuracy are important. There are three main catego-
ries of evaluation criteria (Yeghiazaryan and Voiculescu
2018) that have been proposed for image segmentation:
“pixel-wise” criteria, “topology-wise” criteria, and “point-
wise” criteria. “Pixel-wise” criteria, such as the F1 and IoU,
treat segmentation as a pixel-wise binary classification task
and use statistics to evaluate the performance of models.
These criteria are often used as optimization objectives, with
popular loss functions including the cross-entropy loss and its
variations (Chen et al. 2019, Khadangi et al. 2021), as well as
the Dice loss (Dice 1945). “Topology-wise” criteria, like V-
Rand and V-Info (Arganda-Carreras et al. 2015) consider
both merge and split errors of membranes in their evaluation.
Betti (Hu et al. 2021) is another topology-wise criterion that
compares the topology (number of handles) of the predicted
and ground truth boundaries. The recently proposed clDice
(Shit et al. 2021) modifies the Dice by skeletonization to gain
the topology sensitivity. However, these criteria can be com-
plex and may be affected by small split errors. “Point-wise”
criteria, such as Hausdorff distance and its variations, mea-
sure the difference between the predicted and ground truth
boundaries using distance metrics. However, these criteria
may not be adaptive to different scales and human tolerance
for small misalignment. Our eye movement experiments sug-
gest that humans are not only concerned with pixel accuracy,

but also tolerant of small errors. Therefore, in this work, we
aim to design a criterion with high consistency with human
perception and develop an end-to-end network for high-
resolution EM image segmentation.

3 Perceptual consistency experiment and eye
movement experiment

To verify whether existing evaluation criteria for cell mem-
brane segmentation are consistent with human perception, we
conducted a perceptual consistency experiment and eye move-
ment experiments. The results of these experiments were used
to explore the attentional mechanisms of the human visual
system when observing EM segmentation results. An example
in the Fig. 1 illustrates the inconsistency between human per-
ception and three popular criteria, including F1, IoU, and
Betti, leading us to question the suitability of these criteria for
evaluating the cell membrane segmentation task.

3.1 Perceptual consistency experiment

We selected six state-of-the-art segmentation methods and ap-
plied them to the U-RISC dataset, generating 200 groups of
segmentation predictions. Each group contained three images:
the ground truth image in the center and two segmentation
predictions for the same input cell image on either side (the in-
terface is shown in Supplementary Section S1). Twenty sub-
jects participated in the experiment and were asked to identify
which of the two segmentation results was closest to the truth.
Our results showed that pixel-wise criteria, such as the F1
score and IoU had a consistency of only 34.51% and
35.40%, respectively, while the topology-wise criterion, the
Betti, had a consistency of 47.78%. These findings suggest
that these criteria do not align well with human subjective
perception. Further details on the experimental setup can be
found in Supplementary Section S1.

3.2 Eye movement experiment

We randomly selected 50 groups of images from a dataset
used in a previous experiment on human subjective perception.
Each group contained two images: a prediction and the
ground truth of the same input cell image (as shown in
Fig. 1e). The eye movement data were collected from 20 sub-
jects using the EyeLink 1000 Plus with a high-speed camera at
a 2000 Hz sampling rate. Subjects were asked to identify the
differences between the two images. During the experiment,
the images were presented in a random order and the saccades
and fixation maps were recorded. We found that subjects fo-
cused more on the structures of the membranes and were toler-
ant of small misalignments. Additionally, the saccades of
subjects indicated that they used a global–local strategy and
coarse-to-fine approach, first scanning the image roughly to
locate areas with different structures and then carefully com-
paring those regions repeatedly. These findings suggest that
for cell membrane segmentation tasks, humans would use a
global–local strategy and coarse-to-fine manner. More fixation
maps and saccades are shown in Supplementary Section S2.

4 Perceptual Hausdorff distance

The results of subjective experiments indicated that the com-
monly used evaluation criteria for natural image segmentation
were not in alignment with human perception of cell membrane
segmentation. Meanwhile, the eye movement experiment
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provided insight into how humans visually compare images of
cell membranes, leading to the development of a new evaluation
criterion based on human perception, known as PHD.

In the design of the PHD, we consider the structural infor-
mation of cell membranes and the human tolerance for slight
misalignment. On the one hand, to capture the structural in-
formation, we represent membranes as point-sets and use the
modified Hausdorff distance (Huttenlocher et al. 1993). As
the results of eye movement experiments show, humans are
more sensitive to changes in structure than to changes in
thickness of membranes. Therefore, to alleviate the influence
of the thickness change, the PHD extracts structural informa-
tion (skeleton) from the segmentation results and represents it
as a point-set. Then, it calculates the distance between two
point-sets using an modified version of the Hausdorff distance
(Huttenlocher et al. 1993), which averages the shortest dis-
tance between the two point-sets rather than taking the maxi-
mum value to better reflect global information. This allows
PHD to be more robust to outliers and better aligned and pay
more attention to the global information.

On the other hand, to account for human tolerance, we de-
fine the concept called “Tolerance Distance” Wðx; yÞ
[Equation (1)], between two points as a function of the
Euclidean distance dðx; yÞ between them and a threshold
value s representing the tolerance for small misalignment
errors. We use the rectified linear unit (ReLU) to adjust the
distance depending on whether it exceeds the threshold. As
Fig. 2 (left) shows, if dðx; yÞ > s, it is magnified by fþ, other-
wise, it is narrowed by f�. Considering the calculation cost
and subjective consistency, we use fþðdÞ ¼ d and f�ðdÞ ¼ 0
in the following experiments, which is similar to the ReLU.
Ablation studies for fþ and f� are shown in Supplementary
Section S4.5.

Wðx; yÞ ¼
(

fþðdðx; yÞÞ; dðx; yÞ > s
f�ðdðx; yÞÞ; dðx; yÞ � s

: (1)

To summarize, given unordered non-empty point-sets X, Y,
and the tolerance distance Wðx; yÞ, the PHD is defined as
Equation (2).

dPHDðX;YÞ ¼
1
jXj
X
x2X

min
y2Y

Wðx; yÞ þ 1
jYj
X
y2Y

min
x2X

Wðx; yÞ: (2)

The tolerance distance, represented by the parameter s,
determines the level of tolerance for small misalignment errors
in the PHD metric. This is demonstrated in Fig. 2, which
shows two examples of the influence of the tolerance distance
on the PHD value. In the first example (a), the two skeletons
(shown in blue and orange) are close in Euclidean space but
not coincident. When s ¼ 0, indicating no tolerance for
errors, the PHD value is high. As s increases, the PHD value
decreases. In the second example (b), there is a large offset be-
tween the two skeletons. When s is set to values within the
range [2, 4], the decline in the PHD value is slow. It only
drops to 0 when s ¼ 6, which is the maximum distance be-
tween the two skeletons.

4.1 Consistency between PHD and human

perception

Our experiments have shown that PHD is consistent with hu-
man perception and can effectively evaluate the performance
of cell membrane segmentation algorithms. As shown in
Fig. 3, in comparison to 14 popular metrics (color bars) in-
cluding F1 (Sasaki et al. 2007), clDice (Shit et al. 2022), IoU
(Kosub 2019), Hasudorff (Huttenlocher et al. 1993), ASSD
(Yeghiazaryan and Voiculescu 2018), TPVF (Yeghiazaryan
and Voiculescu 2018), TNVF (Yeghiazaryan and Voiculescu
2018), RVD (Yeghiazaryan and Voiculescu 2018), Precision
(Yeghiazaryan and Voiculescu 2018), V-Rand (Arganda-
Carreras et al. 2015), V-Info (Arganda-Carreras et al. 2015),
ARI (Weng et al. 2021), VOI (Weng et al. 2021), and Betti
(Hu et al. 2021), PHD (gray bars) showed higher consistency
with human perception. The results of different tolerance
thresholds in PHD and the use of skeletonization (�SK) for
other metrics were also compared. Our findings indicate that
PHD is a useful tool for evaluating cell membrane segmenta-
tion algorithms. The formulas are shown in Supplementary
Section S3.

Based on the results of our experiments, it was found that
the criterion of PHD demonstrated the highest level of consis-
tency with the human perception among the popular evalua-
tion metrics tested. In particular, the best consistency between
PHD and human perception was 65.48% when the tolerance
threshold was set to 3. This is nearly double the consistency
scores obtained by the F1 score or IoU, and significantly
higher than the scores for V-Rand and V-Info. Additionally,
as the tolerance threshold for PHD increased from 0 to 800,

Figure 2. Overview of PHD. (Left) Illustration of the tolerance of human vision. (Right) Evaluation with PHD. PHD takes two segmentation results as input.

Then, the two inputs are skeletonized. Finally, a PHD distance can be calculated between two skeletons with different tolerance thresholds. (a) and (b) are

two cases for intuitively understanding the influence of tolerance distance in PHD.
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the consistency with human perception initially increased be-
fore slowly decreasing to 0, indicating that humans do have
tolerance for a certain level of offset. These results suggest
that humans tend to tolerate small perturbations in cell mem-
brane segmentation.

It is worth investigating whether using skeletonization can
improve the performance of other evaluation metrics. The
results in Fig. 3 show that using skeletonization can help
some metrics, such as F1, IoU, and ASSD, to a certain extent.
However, the consistency of F1�SK is only 34.51%, and the
consistency of IoU�SK is 44.25%. These values are still far
from the performance of PHD. This suggests that simply
extracting the membrane skeleton is not sufficient to address
the limitations of existing metrics.

5 PHD-guided segmentation network

Inspired by the PHD criterion and the global–local strategy
with a coarse-to-fine approach observed in the eye movement
experiment, we propose the PS-Net. This network includes a
multiscale architecture with loss functions specifically
designed to guide the segmentation process using PHD.

5.1 Overview of architecture

An overview of the network is depicted in Fig. 4. PS-Net con-
sists of two branches for multiscale image segmentation: the
“global branch” SG, which uses the full image as input, and
the local branch SL, which uses N patches of the cropped orig-
inal image with the same size as input. Both branches use the
same u-shaped encoder–decoder architecture to make proba-
bility predictions, as well as a module for skeleton extraction.
The global and local predictions are then combined to pro-
duce the final segmentation result.

5.1.1 Backbone
The U-Net (Ronneberger et al. 2015) is a convolutional neu-
ral network with a contracting path that captures contextual
information and an expansive path that enables precise locali-
zation. It is often used as an encoder–decoder module in im-
age segmentation tasks. In this work, the U-Net is utilized in
the global and local branches of the PS-Net for probability
prediction.

5.1.2 Skeleton extraction module
The structure extraction module of PS-Net uses the modified
differentiable Zhang–Suen thinning algorithm (Zhang and
Suen 1984) to extract the skeleton of the membrane from the
binary output of the soft-max layer (details in Supplementary
Section S7). This algorithm is fast and reliable for media-axis
extraction, and has shown to be stable in obtaining the skele-
ton of images, even when the number of pixels occupied by
the membrane is small. Other thinning methods, such as dis-
tance transform (Felzenszwalb and Huttenlocher 2012), were
also considered but were found to be less stable in these cases.

5.1.3 Fusion module
This model generates the point-sets of the membranes (Xglobal

of global branch and Xlocal of local branch), which are used
to assist the pixel-wise segmentation during the training pro-
cess. The final prediction is obtained by combining the results
of two branches and employing an average pooling layer with
the probability maps as inputs.

5.2 Loss functions

As for loss function design, different from previous methods
(Chen et al. 2019, Yan et al. 2021), which focus on pixel-wise
accuracy, PS-Net considers both pixel-wise and topology-wise
accuracy. Specifically, three loss functions are utilized during
the training process: pixel-wise loss Lpixel, PHD loss Lphd, and
similarity loss Lsim. Lpixel [Equation (3)] is the combination of
the WCE loss function (Ronneberger et al. 2015) and Dice
loss (Drozdzal et al. 2016), which measures the local similar-
ity of prediction and ground truth in both global and local
branches.

Lpixel ¼ 1�
2
PM

i¼1

PC
j¼1 gc

i s
c
jPM

i¼1 gc
i þ

PM
i¼1 sc

i

� 1
M

XM
i¼1

XC

j¼1

xcgc
i log sc

j ; (3)

where M is the number of pixels of the image, C is the number
of classes, which is two in this task. gc

i is a binary indicator if
class label c is the correct classification for pixel i, and sc

i is the
corresponding predicted probability. wc is the reciprocal of
the class frequency in the training set.

The second loss function is the PHD loss Lphd, which is
used to penalize the difference in membrane structures

Figure 3. Consistency with human perception. The left color bars show the consistency results of varies of criteria. �SK represents the metrics with

skeletonization. The gray bars show the results of PHD with different threshold s (the numbers on X-axis). And the black bar shows the PHD without

skeletonization (w/o SK) with tolerance distance equal to 0.
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between the ground truth and predictions in both the global
and local branches. As shown in Equation (4), the function
compares the skeleton point-sets of the predictions, repre-
sented by Xglobal and Xlocal, with their respective ground
truth, represented by Yglobal and Ylocal. In order to compute
the loss for backpropagation, the soft-max function is applied
to the likelihood map for binarization and the derivative of
the binary image is shown in Supplementary Section S7.

Lphd ¼ dPHDðXglobal;YglobalÞ þ dPHDðXlocal;YlocalÞ: (4)

In addition, the similarity loss Lsim is used to measure the
similarity between the global and local scales by calculating
the PHD distance between the skeleton point-sets of the
global prediction ðXglobal and the stitched local predictions

X̂
localÞ. It is designed as Lsim ¼ dPHDðXglobal; X̂

localÞ. The

stitched local predictions X̂
local

are obtained by stitching the
skeleton point-sets Xlocal from the local branch, and have the
same size as the global skeleton point-sets Xglobal. This loss
helps to ensure that the prediction from the global branch and
the stitched prediction from the local branch are consistent in
terms of structure.

5.3 Coarse-to-fine training

During the training process, three loss functions are optimized
with a coarse-to-fine strategy, which aims to assist the net-
work focusing more on generating a coarse segmentation re-
sult, and then subsequently shifting to detailed information.
Correspondingly, in our method, Lpixel measures the accuracy
of each pixel in the image, which is the low-level (local) fea-
ture, while Lphd and Lsim measure the structural difference of
membranes, which is the high-level (global) feature. In con-
trast to the two-stage refinement approach utilized by Chen
et al. (2019), PS-Net employs pixel-wise loss for the first sev-
eral epochs as to generate a coarse segmentation result. And
then, to get a finer cell membrane structure, the weights of
PHD loss and similarity loss are adaptively raised with the
number of training epochs. Let k1 and k2 be the adaptive
weights of Lphd and Lsim. The final loss function of PS-Net L

is shown in Equation (5). The details of the parameter settings
are shown in Supplementary Section S4.2.

L ¼ Lpixel þ k1Lphd þ k2Lsim: (5)

6 Segmentation experiments

The performance of PS-Net was evaluated on two EM image
datasets. Results show that PS-Net outperforms existing
methods. Then, ablation studies were performed to isolate the
individual contributions of the main components and parame-
ters of our approach. Furthermore, PS-Net was extended to
two natural image segmentation datasets with SOTA
performance.

6.1 Experiments on EM image datasets

We evaluated our method on two EM datasets: ISBI 2012
and U-RISC. We used a 3-fold cross-validation to tune hyper-
parameters for both our proposed method and eight baseline
methods. The evaluation metrics included F1 score, IoU, V-
Rand, V-Info, TPVF, TNVF, Hausdorff distance, and our
proposed PHD-s, where s is the tolerance threshold. The base-
line methods included U-Net (Ronneberger et al. 2015),
CASENet (Yu et al. 2017), LinkNet (Chaurasia and
Culurciello 2017), GLNet (Chen et al. 2019), SENet (Hu
et al. 2018), U-Netþþ (Zhou et al. 2018), Mosin. (Mosinska
et al. 2018), and DMT (Hu et al. 2021). We report the mean
and SD performance over the test set for all the methods.
More details about the datasets, baseline models, and evalua-
tion metrics are provided in Supplementary Section S4. *
represents that the predicted results for evaluation are re-
implemented by the official code.

For the ISBI 2012 dataset, our method achieves SOTA per-
formance as reported in Table 1. We also summarized some
leading quantitative results reported in original papers in
Supplementary Sections S4.3 and S4.4. The results show that
PS-Net obtained the best scores on all of these metrics (as
shown in bold font). More visualizations of segmentation
results are depicted in Fig. 5. Our method has fewer mistakes.

Figure 4. An overview of PS-Net. PS-Net has two branches to segment multiple scales of the input image. In the global branch, the u-shape

segmentation module uses the original image as input and outputs its membrane probability map. In the local branch, the original image is cropped into N

patches with the same size. Then, the patches are put into the segmentation module with N prediction maps as outputs. The two branches share

weights during the training process. The structure extraction module is designed to compute the skeletons of the all the N predictions. Three loss

functions: pixel-wise loss, PHD loss, and similarity loss are calculated during the training. PS-Net outputs the prediction from the results of two branches.
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More visualization results are shown in Supplementary
Section S4.7.

For the U-RISC dataset, we first summarize the top four
results reported in the leaderboard of the challenge
(Supplementary Section S4.4). Our method has reached the
best performance (promote approximately 11.5% more than
the winning team in the challenge). Similar to the experiments
of ISBI 2012, to compare more results of other metrics, we
train and test the six competitive methods, using the data divi-
sion the same as the challenge. The scores and SD of eight
evaluation metrics are reported on the testing images. The
results in Table 2 show that PS-Net outperformed the other
methods. In particular, it not only greatly improves the F1
score, but also performs well in other metrics. In addition, we
observed an apparent decline of the PHD-s scores at s ¼ 10
and s ¼ 50 for ISBI 2012 and U-RISC, respectively, which
showed that the U-RISC was a more challenging dataset to
gain a fine segmentation. Compared with other methods, our

method is able to alleviate the missing structures and redun-
dant predictions (as shown in Supplementary Section S4.8).

6.2 Ablation study on U-RISC

To evaluate the effectiveness of the proposed two strategies
and three loss functions, we conducted several ablation
experiments on the U-RISC dataset.

6.2.1 PHD-based loss functions
To evaluate the effectiveness of PHD-based loss functions, we
trained the model using only the pixel-wise loss Lpixel, and
then added the PHD loss Lphd and similarity loss Lsim. The
results are presented in Table 3, where L1, L2, and L3 repre-
sent Lpixel, Lphd, and Lsim, respectively. The results show that
Lphd improved the performance of the three architectures. In
particular, the F1 score increased by �6.63% and the PHD-0
score decreased by �1.83 when using Lphd. Additionally, the
combination of Lsim with Lphd resulted in an �1.49% increase

Table 1. Quantitative results of the methods on ISBI 2012 dataset.

Metrics U-Net* CASENet* LinkNet* GLNet* SENet* U-Netþþ* Mosin.* DMT* PS-Net

F1 (%) 92.0160.02 87.9960.05 89.4060.04 90.4160.02 91.3560.02 93.0160.02 82.3060.03 92.9360.02 93.9860.02
IoU (%) 92.31 60.01 89.6160.01 91.0260.01 81.8960.02 84.2460.01 89.5660.02 90.8860.01 92.1960.01 93.9960.01
V-Rand (%) 96.3360.02 96.5360.32 96.9960.04 95.6960.07 94.5460.04 95.8160.05 95.9960.04 96.7460.06 98.3760.02
V-Info (%) 96.0160.02 96.2760.03 95.0160.04 96.5660.02 96.4260.01 97.0760.05 95.8160.05 97.8260.01 98.7560.02
TNVF (%) 94.6160.01 93.1260.02 93.0860.03 93.5260.02 92.0460.03 94.2560.03 94.6660.01 94.6760.02 94.6860.01
TPVF (%) 91.9660.04 91.7760.05 89.9460.07 91.8060.04 90.4960.03 91.4560.02 92.0460.03 92.7560.02 93.0060.04
ASSD # 2.68961.92 3.15761.13 3.92162.15 3.03662.01 3.00261.19 2.99462.05 3.01561.87 3.84561.86 2.04161.98
HD # 55.94610.4 59.87617.0 63.12628.1 83.12617.0 72.46619.4 60.35610.5 93.03619.2 84.94613.6 54.62613.8
PHD-0 # 5.95062.06 6.01361.05 5.81464.52 6.98963.57 5.36262.50 4.20563.95 4.83362.97 4.37463.19 3.95461.04
PHD-3 # 5.65062.07 5.99061.02 5.62764.66 6.88463.10 5.02862.18 4.00263.65 4.62962.54 4.08163.02 3.66161.25
PHD-5 # 3.66361.91 4.28063.82 3.63160.82 5.29963.84 3.71662.11 3.76963.02 3.89461.18 3.35162.44 3.04261.53
PHD-10 # 2.41461.08 2.99762.05 2.14661.07 3.01762.58 2.63161.98 2.87761.94 2.51061.01 1.99362.31 1.04560.99
PHD-50 # 0.28060.01 0.24160.03 0.35160.02 0.2660.017 0.29160.02 0.23860.03 0.27460.03 0.28660.04 0.24460.01

The boldface values indicate the best performance.

Figure 5. Segmentation results of ISBI 2012 (first two rows) and U-RISC (last two rows) datasets. Red arrow: false negative error. Blue arrow: false

positive error.
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in the F1 score and a decrease of �0.78–1.176 in the PHD
score. This indicates that the structure of the cell membrane
plays an important role in its segmentation. Furthermore, for
the selection of the tolerance, we conducted the ablation
experiments summarized in Supplementary Table S5. The
results show that PS-Net achieves the best performance when
s¼2. Further, we also compared the PHD loss with another
topology loss, clDice loss (Shit et al. 2022), in Supplementary
Table S6, and the results verify the superiority of PHD loss.

6.2.2 Global–local strategy
To investigate the effectiveness of the global–local strategy,
we conducted experiments using three architectures: SG, SL,
and SGþSL. Results presented in Table 3 indicate that the
combined approach of SGþSL outperforms either SG or SL

alone. When using only pixel-wise loss, the F1 score of SGþSL

is 59.57% compared to 51.57% for SG and 58.23% for SL.
Similar improvements were observed on other evaluation cri-
teria. These results suggest that the global–local strategy can
be advantageous in segmentation, as it not only increases the
local accuracy but also alleviates the global structure distance.
Moreover, to provide further insight into the impact of PS-
Net, we have illustrated the feature visualization in
Supplementary Fig. S6 and conducted an attribution analysis
for the global–local strategy in Supplementary Fig. S9. Our
results indicate that the model trained with this strategy is
able to capture more structural information, with a larger
number of pixels contributing significantly to the prediction.
These findings suggest that the global–local strategy enables
the network to effectively utilize features of larger regions,
thereby improving the segmentation performance. Due to
space limitations, we have provided additional information in
the Supplementary Materials.

6.2.3 Coarse-to-fine strategy
Additionally, the experiments were conducted to explore the
effectiveness of the coarse-to-fine strategy by varying the
parameters k1, k2, and k, as presented in Table 3 and
Supplementary Table S5. The results indicate that gradually
increasing the weights of the similarity loss and PHD loss
resulted in improved segmentation performance. Notably,
when the epoch is set to five, the introductions of the similar-
ity loss and PHD loss yielded the best performance. These
findings suggest that the coarse-to-fine strategy, with appro-
priate parameter tuning, can effectively improve the accuracy
of segmentation tasks.

6.3 Experiments on natural image datasets

We further extend PS-Net to two natural image datasets:
“Road” (Mnih 2013) and “CrackTree” (Zou et al. 2012).
For evaluation, Pixel-wise accuracy, ARI, VOI, and Betti are
chosen for comparison [reported by (Hu et al. 2021)]. The
results in Table 4 also show that our work has SOTA perfor-
mance. It is worth mentioning that PS-Net obtained a much
better VOI score (0.5117) on the Road dataset.

7 Conclusions

In this study, we propose a novel criterion PHD and a PHD-
based network for the task of cell membrane segmentation in
EM images. The motivation for this approach arose from the
discrepancy between commonly used metrics and human eval-
uations of segmentation results. To gain insight into the way
humans analyze differences between segmentations, we con-
ducted eye movement tracking experiments. These experi-
ments revealed that humans utilize “global-local” and
“coarse-to-fine” strategies in this process. Based on these
observations, we incorporated these strategies into our model

Table 2. Quantitative results of the methods on U-RISC dataset.

Metrics U-Net* CASENet* LinkNet* GLNet* SENet* U-Netþþ* Mosin.* DMT* PS-Net

F1 (%) 48.8360.02 60.0760.05 60.7060.04 58.1060.04 52.1260.05 60.3060.05 47.5660.09 39.6860.05 67.6960.02
IoU (%) 32.3360.02 43.0760.05 43.6960.05 41.0560.04 35.4160.05 43.2960.04 40.2960.08 37.9860.06 43.6360.03
V-Rand (%) 49.3860.03 59.2160.05 63.1060.04 53.4160.04 52.8860.05 62.1160.04 49.7560.05 50.3760.04 68.9360.02
V-Info (%) 51.2060.04 60.1360.04 62.3960.03 54.3360.04 51.7860.06 62.3460.04 58.6460.03 59.2760.05 65.3260.03
TNVF (%) 88.6260.02 96.2260.05 96.0260.03 95.7260.04 97.6860.05 95.9260.03 94.2560.05 96.3160.04 97.8260.02
TPVF (%) 35.2460.03 56.0460.04 55.6260.04 53.3960.04 52.91 60.04 54.9360.04 54.9960.03 53.7760.05 56.1760.03
ASSD # 10.1668.14 9.31463.51 9.20164.43 11.9669.45 12.1166.34 9.10664.52 19.67610.3 13.0468.45 7.80864.15
HD # 271.5631.1 566.1632.2 352.9629.9 399.3639.1 547.3638.0 414.0631.9 484.6651.5 683.9682.4 252.8630.2
PHD-0 # 18.6569.72 19.2569.33 22.7266.93 23.3066.46 20.4265.22 17.2567.33 24.5468.98 29.5669.57 15.2965.79
PHD-3 # 17.9368.52 19.01610.2 22.7066.92 23.1566.05 19.8666.13 16.9968.21 24.2667.38 29.5668.48 15.0166.29
PHD-5 # 17.3766.25 16.7269.15 20.4167.81 21.2565.74 17.47610.0 16.5567.01 22.8568.62 28.78610.3 13.5265.03
PHD-10 # 8.51265.10 10.3866.99 11.9068.66 11.5366.03 9.9367.23 8.9966.72 19.4867.29 18.6766.27 6.97966.67
PHD-50 # 6.50161.17 10.2565.64 5.43662.82 5.17064.62 3.20162.53 4.31262.97 15.4766.13 14.5266.29 1.59462.06

The boldface values indicate the best performance.

Table 3. Ablation study for the architectures and loss functions of PS-Net on U-RISC dataset.

Method L1 L2 L3 F1 (%) V-Rand (%) V-Info (%) PHD-0# PHD-5# PHD-10# PHD-50#

SG � 51.57 53.01 53.92 21.61 19.59 10.42 7.227
SL � 58.23 56.94 57.05 23.53 20.41 12.92 8.039
SG þ SL � 59.57 58.71 59.80 20.91 17.04 9.367 6.294
SG � � 53.81 54.78 54.79 17.58 16.11 8.829 3.142
SL � � 61.98 63.62 61.03 17.14 16.32 8.994 3.035
SG þ SL � � 66.20 67.24 65.00 16.07 15.21 7.878 2.770
SG þ SL � � � 67.69 68.93 65.32 15.29 13.52 6.969 1.594

The boldface values indicate the best performance.
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through the use of separate global and local networks and the
inclusion of PHD-based losses after initializing training with
pixel-wise loss. Our proposed method was evaluated on sev-
eral public EM and natural image datasets with consistently
high performance.

Acknowledgements

We acknowledge High-Performance Computing Platform of
Peking University for computational resources.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was partially supported by the Natural Science
Foundation of China [under contracts 62088102].

Data availability

The data underlying this article is available in https://github.
com/EmmaSRH/PS-Net.

References

Arganda-Carreras I, Turaga SC, Berger DR et al. Crowdsourcing the
creation of image segmentation algorithms for connectomics. Front
Neuroanat 2015;9:142.

Beaucousin V, Simon G, Cassotti M et al. Global interference during
early visual processing: ERP evidence from a rapid global/local selec-
tive task. Front Psychol 2013;4:539.

Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations
for efficient semantic segmentation. In: VCIP. St. Petersburg, FL,
USA, 10-13 December, IEEE. 2017, 14.

Chen W, Jiang Z, Wang Z, et al. Collaborative global-local networks
for memory-efficient segmentation of ultra-high resolution
images.In: CVPR. Long Beach, California, USA, 16-19 June, IEEE/
CVF 2019;8924-8933.

Curry A, Appleton H, Dowsett B et al. Application of transmission elec-
tron microscopy to the clinical study of viral and bacterial infections:
present and future. Micron 2006;37:91–106.

Dice LR. Measures of the amount of ecologic association between spe-
cies. Ecology 1945;26:297–302.

Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip
connections in biomedical image segmentation. In DLMIA. Athens,
Greece. 21 October, Cham: Springer, 2016. 179-187.

Erlandson RA. Role of electron microscopy in modern diagnostic surgi-
cal pathology. Mod Surg Pathol 2009;71–84.

Fakhry A, Peng H, Ji S et al. Deep models for brain EM image segmenta-
tion: novel insights and improved performance. Bioinformatics
2016;32:2352–8.

Felzenszwalb PF, Huttenlocher DP. Distance transforms of sampled
functions. Theory Comput 2012;8:415–28.

Flevaris AV, Mart�ınez A, Hillyard SA et al. Attending to global versus
local stimulus features modulates neural processing of low versus
high spatial frequencies: an analysis with event-related brain poten-
tials. Front Psychol 2014;5:277.

Harris KM, Perry E, Bourne J et al. Uniform serial sectioning for trans-
mission electron microscopy. J Neurosci 2006;26:12101–3.

Hegdé J. Time course of visual perception: coarse-to-fine processing and
beyond. Prog Neurobiol 2008;84:405–39.

Hu J, Li S, Gang S. Squeeze-and-excitation networks. In: CVPR. Salt
Lake City, USA, 18-22 June, IEEE/CVF 2018; 7132-7141.

Hu X, Wang Y, Fuxin L, et al. Topology-aware segmentation using dis-
crete Morse theory. In: International Conference on Learning
Representations. arXiv preprint arXiv:2103.09992. 2021.

Huttenlocher DP, Klanderman GA, Rucklidge WJ et al. Comparing
images using the Hausdorff distance. IEEE Trans Pattern Anal
Mach Intell 1993;15:850–63.

Khadangi A, Boudier T, Rajagopal V. EM-net: deep learning for electron
microscopy image segmentation. In: ICPR, Milan, Italy, 10-15
January, IEEE 2021; 31-38.

Kosub S. A note on the triangle inequality for the Jaccard distance.
Pattern Recognit Lett 2019;120:36–8.

Lou A, Guan S, Loew M. Dc-UNet: rethinking the U-Net architecture
with dual channel efficient CNN for medical image segmentation. In:
Medical Imaging 2021: Image Processing, Vol. 11596. 115962T. 15
February, SPIE 2021.

Mnih V. Machine Learning for Aerial Image Labeling. University of
Toronto (Canada). NR96184. ProQuest Dissertations Publishing
2013.

Mosinska A, Márquez-Neila P, Kozi�nski M, et al. Beyond the pixel-wise
loss for topology-aware delineation. In: CVPR. Salt Lake City, 18-
22 June, IEEE/CVF., 2018. 3136–45.

Nayar K, Franchak J, Adolph K et al. From local to global processing:
the development of illusory contour perception. J Exp Child Psychol
2015;131:38–55.

Pallotto M, Watkins P V, Fubara B, et al. Extracellular space preserva-
tion aids the connectomic analysis of neural circuits. Elife 2015;4:
e08206.

Paszke A, Chaurasia A, Kim S, et al. ENet: a deep neural network architec-
ture for real-time semantic segmentation. arXiv, arXiv:1606.02147,
2016, preprint.

Pelling AE, Li Y, Shi W et al. Nanoscale visualization and characteriza-
tion of Myxococcus xanthus cells with atomic force microscopy.
Proc Natl Acad Sci USA 2005;102:6484–9.

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In: MICCAI. Munich, Germany. 5-
9 October, Springer 2015; Part III 18. 234-41.

Sasaki, Yutaka. The Truth of the F-Measure. Teach tutor mater. School
of Computer Science, University of Manchester MIB, 131 Princess
Street, Manchester, M1 7DN. 26 October, 2007;1(5):1–5.

Table 4. Quantitative results on Road, and CrackTree datasets.

Road

Methods Acc ARI VOI# Betti#

DIVE 0.973460.01 0.820160.01 2.36860.20 3.59860.78
U-Net 0.978660.01 0.818960.01 2.24960.18 3.43960.62
Mosin. 0.975460.01 0.845660.02 1.45760.10 2.78160.24
TopoLoss 0.972860.01 0.867160.01 1.23460.04 1.27560.19
DMT 0.974460.01 0.881960.01 1.09260.13 0.99560.30
PS-Net 0.978560.01 0.881160.01 0.511760.09 0.89860.19

CrackTree

Methods Acc ARI VOI# Betti#

DIVE 0.985460.01 0.863460.04 1.57060.08 1.57660.29
U-Net 0.982160.01 0.874960.04 1.62560.10 1.78560.30
Mosin. 0.983360.01 0.889760.02 1.11360.06 1.04560.21
TopoLoss 0.982660.01 0.929160.01 0.99760.01 0.67260.18
DMT 0.984260.01 0.930760.02 0.90160.08 0.51860.19
PS-Net 0.995760.01 0.903860.02 0.90160.02 0.51260.15

The boldface values indicate the best performance.

Human perception-guided segmentation network for EM images 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/8/btad464/7233070 by Peking U
niversity user on 05 O

ctober 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad464#supplementary-data
https://github.com/EmmaSRH/PS-Net
https://github.com/EmmaSRH/PS-Net


Shen W, Wang B, Jiang Y, et al. Multi-stage multi-recursive-input fully
convolutional networks for neuronal boundary detection. In: ICCV.
Venice, Italy, 22-29 October, IEEE/CVF 2017, 2391–400.

Shi R, Wang W, Li Z et al. U-RISC: an annotated ultra-high-resolution
electron microscopy dataset challenging the existing deep learning
algorithms. Front Comput Neurosci 2022;16:842760.

Shit S, Paetzold JC, Sekuboyina A, et al. clDice-a novel topology-
preserving loss function for tubular structure segmentation. In:
CVPR. Virtual, 19-25 June, IEEE/CVF 2021, 16560–9.

Spillmann L. From elements to perception: local and global processing
in visual neurons. Perception 1999;28:1461–92.

Weng G, Dong B, Lei Y et al. A level set method based on additive bias cor-
rection for image segmentation. Expert Syst Appl 2021;185:115633.

Yan J, Chen H, Wang K, et al. Hierarchical attention guided framework
for multi-resolution collaborative whole slide image segmentation.

In: MICCAI. Strasbourg, France, 27 September – 1 October, 2021,
Proceedings, Part VIII 24. Springer, 2021, 153–63.

Yeghiazaryan V, Voiculescu ID. Family of boundary overlap metrics for
the evaluation of medical image segmentation. J Med Imaging
(Bellingham) 2018;5:015006.

Yu Z, Feng C, Liu M, et al. CASENet: deep category-aware semantic
edge detection. In: CVPR. Honolulu, Hawaii, USA. 21-26 July,
IEEE/CVF 2017, 5964–73.

Zhang T, Suen CY. A fast parallel algorithm for thinning digital pat-
terns. Commun ACM 1984;27:236–9.

Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al. UNetþþ: a nested
U-Net architecture for medical image segmentation. In: DLMIA.
Granada, Spain, 20 September, Springer 2018. 4:3-11.

Zou Q, Cao Y, Li Q et al. CrackTree: automatic crack detection from
pavement images. Pattern Recognit Lett 2012;33:227–38.

10 Shi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/8/btad464/7233070 by Peking U
niversity user on 05 O

ctober 2023


	Active Content List
	1 Introduction
	4 Perceptual Hausdorff distance
	5 PHD-guided segmentation network
	6 Segmentation experiments
	7 Conclusions
	Acknowledgements
	Data availability
	References


